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Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube
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In order to gain insight into the effects of elasticity on the dynamics of fluids in porous media, we have
analyzed the flow of a Maxwell fluid in a tube. The entire problem is transformed to the frequency domain
through a time Fourier transform and this allows for the derivation of a dynamic generalization of Darcy’s law.
Analytical results are provided showing a dramatic enhancement at certain frequencies. We present a paramet-
ric analysis of the dissipative and elastic behavior of the system, and we obtain an analytic expression for the
maximum value of the permeability and the frequency at which this maximum occurs in terms of the physical
properties of the fluid and the radius of the tube. With these results, we show that the human pulse occurs at
a frequency that produces a permeability in the neighborhood of the maximum permeability.
[S1063-651%98)11210-2

PACS numbes): 87.45.Ft, 83.80.Lz, 47.55.Mh

I. INTRODUCTION sure gradient was given. In addition, other experimental evi-
dence of similar enhancement for viscoelastic fluids was later
Many problems associated with the petroleum, plasticprovided [10]. In this last case, the observed phenomena
and chemical industries involve the response of a fluid in aould not be described in terms of a non-Newtoniaglas-
porous medium to a frequency dependent pressure drop. Thie fluid and elastic behavior had to be incorporated in order
study of the frequency dependence of sound propagation cdn explain the experimental observations. The general aim of
be used to determine the permeability in some cases of satthese studies was directed at the relation between the mag-
rated porous media, and the same approach may provide tinitude of the mean pressure and the increasing mean flow
parameters that characterize the geometry of the njadia rate[11]. Biorheology is another field in which this type of
useful way to describe such frequency-dependent processgs/estigation is of particular interest since blood or other
is through a dynamic permeability functi¢8]. Expressions biofluids are forced through capillaries by a periodic pressure
for the dynamic permeabilitpf compressible Newtonian flu- gradient[12]. When blood is modeled as a Maxwell fluid
ids have been obtained for rigid, isotropic porous mé@ia  with several relaxation times, good agreement is follg]
and for deformable porous medjd]. In addition, dimen- with the experimental measurements.
sional analysis has also been used in connection with Electrorheological and magnetic phenomena in viscoelas-
frequency-dependent procesfg$]. Many studies, based on tic fluids, where frequency-dependent properties may play an
such an analysis, have attempted to describe viscoelastimportant role, have also been the subject of recent interest.
flow through porous media in terms of the friction facfbt. In the steady state, cluster formation in electrorheological
It must be pointed out that most of those studies were fofluids has been found to produce a nonlinear dependence of
either steady or quasisteady situatipfb The study of tran- the viscosity on the shear rait#4]. Bounds for the physical
sient flow of non-Newtonian fluids has been used to investiproperties involved in the electrorheological flow have been
gate the normal stress for flow in a tul8d, and in particular  given[15] . The dynamic orientational response of a dilute
to describe the role of an increasing pressure gradient on theuspension of single-domain magnetic particles immersed in
velocity profile. Nevertheless, in all of these studies the frea Maxwell fluid has been described as a complex comblike
quency dependence of the permeability has not been considtructure] 16]. Experimental studies of the pressure drop and
ered. the flow rate of dilute solutions of polyethylene oxide flow-
In a similar vein, during the past few years attention hadng through beds of packed beads have shown that the pres-
been given to the study of the dynamic response of nonsure drop is greater than that for a Newtonian fluid, except
Newtonian fluids in tubes, focusing on the problem of transfor some solutions in a small range of flow rates where there
port of inelastic fluids through pipd®]. In those studies, an was an interval in which the pressure drop decreased with
enhancement of the mean flow rate was found, and the peicreasing velocity17]. In this range of velocities, referred
centage increase in terms of the magnitude of the mean preas thevelocity gap it was not possible to obtain steady con-
ditions [17]. This velocity gap was not fully explored, al-
though it is of interest from both the fundamental and the
*On leave from Centro de Investigacion en Energia UNAM. applied points of view.
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Recently, we studied the flow of a Maxwell fluid in po- wherez is the viscosity and,, the relaxation time. We now
rous media18], and found that in the linearized case it is begin our analysis of the momentum equation by substituting
possible to get an enormous enhancement of the dynamig€qg. (3) into Eqg.(2) and constructing the Fourier transform to
permeability in comparison with the static one. The purposebtain
of this paper is to present additional results for the case of the
flow of a linearized Maxwell fluid in a tubEL9] subjected to p(tm@?+iw)V+7V?V=(1-iwty, VP. 4

an oscillating pressure gradient. We obtain an analytic result

that exhibits an enhancement of the mean frequency-€'€ @ is the frequency, and in order to minimize compli-
dependent velocity. Our analysis is centered on the frecations with the nomenclature, we have used upper case let-

quency dependence of the permeability and on the compeﬂ?rs to represent the_time Fourie_zr tr_ansform. In cylindrical
tion between dissipative and elastic effects. We are able t6°rdinates, the solution of E(#) is given by

identify the values where it is possible to obtain a resonance (1—iwt )[ Jo(Br) 0P
and therefore an enhancement in the flow rate. Also, we give V(r)=— Mg 20 — (5)
two simple formulas, one for the value of the maximum per- p> |7 Jo(Ba)|oz

meability at a given value of the Deborah number and an- . ) » . ]
other for the frequency where this maximum occurs. We us&? Which the no-slip condition has been imposed at the radius
these results to show that the pulse of the human heart is i the cylinder,V(a)=0. In Eq. (5) we have used/(r) to

the most efficient range to produce a maximum flow througHepPresent the Fourier transform of taecomponent of the

arteries and veins. velocity and we have usefl to represent the parameter de-
In the next section we present an analytic solution for dined by

Maxwell fluid flowing in a tube. In the derivation, we will 112

neglect the nonlinear effects to obtain a dynamic permeabil- B=| Lt @) 2t iot,]

ity for the mean flow. This dynamic permeability exhibits a tm

resonantlike behavior that depends only on the Deborah . insiah ing th flow in the tub
number. In the third section we present numerical calculad © 9N SOMe insight concerning the mean flow in the tube,
tions and develop expressions for the first maximum of theVe form the area average denoted(l) to obtain

dynamic response and the specific frequency at which it oc-

curs as functions of the Deborah number. Finally, we close (V)= —K((o)i. (6)
the paper in Sec. IV with some concluding remarks. 9z
Here the dynamic permeability is given by
Il. FREQUENCY DEPENDENT PERMEABILITY ]
o . . a%(1-iwty)|
In this section we present the analysis of a Maxwell fluid K(w)=— o { - Ji(Waw) |,
flowing in a cylindrical tube. We solve analytically the equa- VawJo(Vaw)
tion of motion in the frequency domain and integrate it in @

order to obtain an expression for the mean flow velocity.; \vhich o~
With this expression we can define a dynamic permeability
which shows an enhancement with respect to its value

! is the Deborah numbes;= pa?/ 7t,,, and the
tarameterw is defined by

steady state. w(w)=(0*)’+iw*
The physical process that we wish to analyze is described
by a continuity equation for incompressible flow, with the dimensionless frequenay* given by
*=tho.
V.v=0, (1) © e

This expression is similar to the one found using the
method of volume averagifd 8], and in the limitt,,—0 we
recover the result of Zhou and Sheng. We observe that the
inverse of a Deborah number, can be expressed as

=—Vp—V-7, (2) t

and the linearized momentum equation

av
Pt

in the absence of any nonuniform external field. Herep-  \yheret,=pa?/y is a characteristic time for purely viscous
resents pressure that may contain the effect of gravifg,  effects. Thusa is the governing parameter that determines
the fluid velocity, p is the mass density of the fluid, and  \yhether the behavior is elastic or viscous. The critical value

represents the viscous stress tensor. _ of @ may be obtained by analyzing the imaginary part of the
To study a viscoelastic fluid we consider the linear formyermeability. In order to do this, it is convenient to use the
of the Maxwell model dimensionless permeability defined by
or 8K(w)
2 _ K*(w)=— ,
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FIG. 1. The dimensionless permeability is plotted against the d_FIG' 2.fTh|s lgrz;phgshc()jwsthzc]_aQ—apalrs(solld ling) and the
dimensionless frequency for the case of a Deborah number of adjusting formula Eq(9) (dashed ling
=0.01. The solid and dashed lines correspond to the real and ima

. Yions immediately arise that will serve to assess the impor-
nary parts, respectively.

tance of such resonances. The first one concerns the maxi-
mum value of REK* (w)] for a given value ofx, while the

S0, that Eq(7) takes the form second has to do with the value of the frequency correspond-

8(1—it )[ 5 ing to such a maximum. In order to present useful results, we
K*(w)= miq— Ji(Vaw)|. have plotted in Figs. 2 and 3 the numerically determined
aw { VawJo(Vaw) values ofK} ., and w},, as functions ofa, respectively.

(8) These results can be fitted rather well for several orders of

i f th f
This expression gives the dynamic behavior of a MaxwellmagnItUde of the parametar by means o

fluid flowing in a tube. It is important to note that it does not . 1034

take into account the nonlinear aspects of viscoelasticity; , max— 9
Eq. (8) does, however, contain the intrinsic elastic behavior.
To gain some insight into the importance of this formula, wegnd
present in the following section some numerical calculations.
. 102/5

m ax: \/Z

It is clear that the maximum value of the permeability Combination of these two results leads to
corresponds to the maximum value for the mean velocity for 1B, %2
a given pressure gradient. In order to illustrate the results that Kinax=10"(0™)*%.
we have obtained, we now consider some particular values.
For example, using a relaxation time on the order of seconds,
a mass density and viscosity on the order of those of watek,
and a tube radius on the order of centimeters, we find
~0.01. The behavior oK* (w) for this value ofa can be
seen in Fig. 1. It is important to emphasize that the maximum
of the permeability is not at the phase point, because the
dissipation shifts this maximum to slightly higher frequen-
cies. !
In the case of Newtonian fluids a dissipative behavior is
always found in transient problems, while in Fig. 1 we see an %
elastic resonance at a specific frequency. This resonance in- g
plies that the dynamic response could be several orders ¢ 001
magnitude higher than the steady one. The critical value for
the parametex which determines whether a dissipative be-  o.001
havior prevails or a resonance at a given frequency appears i
[18] 0.0001

0]

IIl. DETERMINATION OF THE MAXIMUM VELOCITY (10

This expression indicates that, in the elastic regime, the
aximum value for the velocity grows more rapidly than the
equency of the oscillating pressure. Up to this point, we

10

MR | N | MR | el
0.001 0.01 0.1 1 10

a.=11.64.

o

If a>a., the behavior of the system is dissipative, while  FIG. 3. This graph shows the comparison between the adjusting
resonant frequencies can be found a,. Now, two ques-  formula[dashed line Eq(10)] and wyaca pairs(solid line).
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Thus the optimum pumping frequency range for these val-
I ues of a lies betweenw=107%/0.00035=134 rad/s
100 | a=0.01 and o yan=107°/1/0.42875=3.8 rad/sec, or equivalently,

134
14 :E ~20 Hz

and

TE 3.8
E thz"vvo.G Hz.

ol ey With these calculations, we may ask whether the heart
0 10 20 30 40 50 60 pumps our blood in the most efficient manner according to

® the viscoelastic properties of the blood and the radius of the

o ) ) arteries. The range of our estimations is in agreement with
FIG. 4. In this figure the real part of the dimensionless permeyhe experimental results in oscillatory flow in rigid blood-
abll.lty is shown. Here it is clear that the second maximun also caljjied tubes[20]. But before addressing the answer, it is im-
be important. portant to clarify some points involved in such calculations.

. . There are other times associated with the viscoelastic re-

hgve analyzed only the main maximum but, as can be S€EN Uhsnse of the blood cell ensemble on the order of seconds

Fig. 4, there are other local maxima. The second maximu 13]. Moreover, the higher value af is probably correct,

shown in Fig. 4 may also be important beca.‘Jse it can b dicating that the most efficient frequency for blood flow in
orders of magnitude larger than the permeability for Stead%\rteries with 0.35 cm. is of the order of 1 Hz. The lower

flow, and the(reduced permeability values between the first value we found fora is open to question, because the blood
and the second maximum are less than 1. This illustrates tl}? ’

filtering characteristic of a viscoelastic fluid flowing in a tub owing in very small capillaries has a lower viscosity than
g characteristic o coelastic fiuid flowing UB€ that of blood flowing in thick arteries, due to a smaller
when oscillations are present.

A licati ‘ vsis of the li ized M packed cell volume fraction in the formg22]. However, our
S an application of our analysis of the linearized Max- simple linear calculation gives a correct order of magnitude
well fluid flowing in a tube, we consider the case of human,

blood flowing in the arteries. In biorheol it nsider dwithout considering complications such as the fact that the
0od flowing € arteries. lorheology It IS CONSICEred , 0 ies and veins are elastic and that there are other nonlin-
that a value fora less than one is representative of elastic

behavior[20,21]. For blood cells the value of the relaxation earities in the viscoelastic characteristics of the blood. In this
. ) e ; ; sense, our estimates in this example serve as an indication of
time is on the order of 0.06 [22], the radius of arteries go P

: .~ the order of magnitude for a resonantlike response in the
from 0102 to 0.35 cnj20] and the densny_ of the blooc_i IS oscillating flow of viscoelastic fluids in a tube. Of course, we
approximately 1.05 g/cin[20,23. Assuming linear vis-

. are fully aware of the fact that in the circulatory system the
coelasticity, elasticity of blood vessels is often important. Nevertheless,
. the results for a Newtonian fluid in a deformable porous
n=n medium[4] indicate that the elasticity of the medium has no
effect on the expression for the dynamic permeability and
one would expect that the same applied also in this case, but
clearly this must be verified. Therefore, an obvious extension
of the present study, which we may address in the future,
would be to consider elastic tubes and include a more real-
istic model for the complex structure of the blood.

it is found that
7' =aexpbP),

where a=1.055,b=0.035, andP (P [0.25,0.6Q) is the
packed cell volume fractiof24], the viscosity units being in
cp. The viscosity of blood depends on the shear rate, ranging
from 5 cp at shear rates on the order of 508 ap to 20 cp IV. CONCLUSION
e, Th developments presente i he prvious secons de-
t0 500 S ! shear rate With hematocrit 3'10/ at 18 5] serve quw furtherl co_mm(.ants..Whne itis clear th.at thg Max-
h d ’ find that in bl Od h ) well fluid is a drastic simplification of a viscoelastic fluid, we
takZ;O?ntvgffesatt)Ztvvﬁ:r?g Ilgwcterallitr;ri]t gic\)/ct)entbj parameter , o persuaded that the results we have derived for the dy-
namic permeability capture the essential physics of the prob-

) 1.050.02?2 lem, albeit in an approximate manner.

4 =—— - =35x10"4 In transport phenomena in porous media, there has al-
20(0.06 ready been some work dealing with the flow of non-
o Newtonian fluids through porous media using several tech-
and an upper limit given by niques[7,5]; however, the dynamic generalization of Darcy’s
5 law for such fluids that we derived in R¢fL8] had not been
ah:1-05(0-35) 0. 42875 attempted previously to our knowledge. From the results of

5(0.06 this paper we are able to give a criterion to select the range
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of frequency to obtain an enhancement in the oscillating flonbe applied to biofluids flowing in capillaries for which the
rate. There is no simple scaling relation, such as the ongesults described in the third section are particularly sugges-
found by Zhou and Shend] for the Newtonian fluid. How- tive.

ever, it is clear that many different combinations of fluid  Finally we would hope our findings encourage further ex-
properties and tube diameters lead to the same value of perimental and theoretical studies f@ the possible use of
and thus some kind of “universality” is implied by E{7). ~ porous media in organic filter applications using an oscilla-
Therefore, we would eXpect that in a real SyStem one Coul%ry pressure gradientb) the conseguences of the enhance-
obtain enhanced transport by identifying the parameter cofment in the dynamic permeability for oil recovery tech-
responding to ourr that combined the characteristics of the njques, andc) the nonlinear behavior in blood or organic
fluid (density, viscosity, and stress tensor relaxation Yimeflow in unsteady situations.

and the radius of the tube. The existence of a velocity gap

[17] in the dilute solution flows through porous media may

be qualitatively understood as a resonance phenomena close ACKNOWLEDGMENTS

to the critical value ofa. It should thus be clear that the
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