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Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube
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In order to gain insight into the effects of elasticity on the dynamics of fluids in porous media, we have
analyzed the flow of a Maxwell fluid in a tube. The entire problem is transformed to the frequency domain
through a time Fourier transform and this allows for the derivation of a dynamic generalization of Darcy’s law.
Analytical results are provided showing a dramatic enhancement at certain frequencies. We present a paramet-
ric analysis of the dissipative and elastic behavior of the system, and we obtain an analytic expression for the
maximum value of the permeability and the frequency at which this maximum occurs in terms of the physical
properties of the fluid and the radius of the tube. With these results, we show that the human pulse occurs at
a frequency that produces a permeability in the neighborhood of the maximum permeability.
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I. INTRODUCTION

Many problems associated with the petroleum, plas
and chemical industries involve the response of a fluid i
porous medium to a frequency dependent pressure drop.
study of the frequency dependence of sound propagation
be used to determine the permeability in some cases of s
rated porous media, and the same approach may provid
parameters that characterize the geometry of the media@1#. A
useful way to describe such frequency-dependent proce
is through a dynamic permeability function@2#. Expressions
for thedynamic permeabilityof compressible Newtonian flu
ids have been obtained for rigid, isotropic porous media@3#
and for deformable porous media@4#. In addition, dimen-
sional analysis has also been used in connection w
frequency-dependent processes@5,6#. Many studies, based o
such an analysis, have attempted to describe viscoel
flow through porous media in terms of the friction factor@5#.
It must be pointed out that most of those studies were
either steady or quasisteady situations@7#. The study of tran-
sient flow of non-Newtonian fluids has been used to inve
gate the normal stress for flow in a tube@8#, and in particular
to describe the role of an increasing pressure gradient on
velocity profile. Nevertheless, in all of these studies the f
quency dependence of the permeability has not been con
ered.

In a similar vein, during the past few years attention h
been given to the study of the dynamic response of n
Newtonian fluids in tubes, focusing on the problem of tra
port of inelastic fluids through pipes@9#. In those studies, an
enhancement of the mean flow rate was found, and the
centage increase in terms of the magnitude of the mean p
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sure gradient was given. In addition, other experimental e
dence of similar enhancement for viscoelastic fluids was la
provided @10#. In this last case, the observed phenome
could not be described in terms of a non-Newtonian,inelas-
tic fluid and elastic behavior had to be incorporated in or
to explain the experimental observations. The general aim
these studies was directed at the relation between the m
nitude of the mean pressure and the increasing mean
rate @11#. Biorheology is another field in which this type o
investigation is of particular interest since blood or oth
biofluids are forced through capillaries by a periodic press
gradient @12#. When blood is modeled as a Maxwell flui
with several relaxation times, good agreement is found@13#
with the experimental measurements.

Electrorheological and magnetic phenomena in viscoe
tic fluids, where frequency-dependent properties may play
important role, have also been the subject of recent inter
In the steady state, cluster formation in electrorheologi
fluids has been found to produce a nonlinear dependenc
the viscosity on the shear rate@14#. Bounds for the physica
properties involved in the electrorheological flow have be
given @15# . The dynamic orientational response of a dilu
suspension of single-domain magnetic particles immerse
a Maxwell fluid has been described as a complex comb
structure@16#. Experimental studies of the pressure drop a
the flow rate of dilute solutions of polyethylene oxide flow
ing through beds of packed beads have shown that the p
sure drop is greater than that for a Newtonian fluid, exc
for some solutions in a small range of flow rates where th
was an interval in which the pressure drop decreased w
increasing velocity@17#. In this range of velocities, referre
as thevelocity gap, it was not possible to obtain steady co
ditions @17#. This velocity gap was not fully explored, a
though it is of interest from both the fundamental and t
applied points of view.
6323 © 1998 The American Physical Society
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Recently, we studied the flow of a Maxwell fluid in po
rous media@18#, and found that in the linearized case it
possible to get an enormous enhancement of the dyna
permeability in comparison with the static one. The purpo
of this paper is to present additional results for the case of
flow of a linearized Maxwell fluid in a tube@19# subjected to
an oscillating pressure gradient. We obtain an analytic re
that exhibits an enhancement of the mean frequen
dependent velocity. Our analysis is centered on the
quency dependence of the permeability and on the comp
tion between dissipative and elastic effects. We are abl
identify the values where it is possible to obtain a resona
and therefore an enhancement in the flow rate. Also, we g
two simple formulas, one for the value of the maximum p
meability at a given value of the Deborah number and
other for the frequency where this maximum occurs. We
these results to show that the pulse of the human heart
the most efficient range to produce a maximum flow throu
arteries and veins.

In the next section we present an analytic solution fo
Maxwell fluid flowing in a tube. In the derivation, we wil
neglect the nonlinear effects to obtain a dynamic permea
ity for the mean flow. This dynamic permeability exhibits
resonantlike behavior that depends only on the Debo
number. In the third section we present numerical calcu
tions and develop expressions for the first maximum of
dynamic response and the specific frequency at which it
curs as functions of the Deborah number. Finally, we cl
the paper in Sec. IV with some concluding remarks.

II. FREQUENCY DEPENDENT PERMEABILITY

In this section we present the analysis of a Maxwell flu
flowing in a cylindrical tube. We solve analytically the equ
tion of motion in the frequency domain and integrate it
order to obtain an expression for the mean flow veloc
With this expression we can define a dynamic permeab
which shows an enhancement with respect to its value
steady state.

The physical process that we wish to analyze is descri
by a continuity equation for incompressible flow,

¹•v50, ~1!

and the linearized momentum equation

r
]v

]t
52¹p2¹•t, ~2!

in the absence of any nonuniform external field. Herep rep-
resents pressure that may contain the effect of gravity,v is
the fluid velocity,r is the mass density of the fluid, andt
represents the viscous stress tensor.

To study a viscoelastic fluid we consider the linear fo
of the Maxwell model

tm

]t

]t
52h¹v2t, ~3!
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whereh is the viscosity andtm the relaxation time. We now
begin our analysis of the momentum equation by substitu
Eq. ~3! into Eq.~2! and constructing the Fourier transform
obtain

r~ tmv21 iv!V1h¹2V5~12 ivtm!¹P. ~4!

Here v is the frequency, and in order to minimize comp
cations with the nomenclature, we have used upper case
ters to represent the time Fourier transform. In cylindric
coordinates, the solution of Eq.~4! is given by

V~r !52
~12 ivtm!

b2 F11
J0~br !

J0~ba!G]P

]z
, ~5!

in which the no-slip condition has been imposed at the rad
of the cylinder,V(a)50. In Eq. ~5! we have usedV(r ) to
represent the Fourier transform of thez component of the
velocity and we have usedb to represent the parameter d
fined by

b5S r

htm
@~ tmv!21 ivtm# D 1/2

.

To gain some insight concerning the mean flow in the tu
we form the area average denoted by^V& to obtain

^V&52K~v!
]P

]z
. ~6!

Here the dynamic permeability is given by

K~v!52
a2~12 ivtm!

aÃ F12
2

AaÃJ0~AaÃ!
J1~AaÃ!G ,

~7!

in which a21 is the Deborah number,a5ra2/htm , and the
parameterÃ is defined by

Ã~v!5~v* !21 iv*

with the dimensionless frequencyv* given by

v* 5tmv.

This expression is similar to the one found using t
method of volume averaging@18#, and in the limittm→0 we
recover the result of Zhou and Sheng. We observe that
inverse of a Deborah numbera, can be expressed as

a5
tv

tm
,

where tv5ra2/h is a characteristic time for purely viscou
effects. Thusa is the governing parameter that determin
whether the behavior is elastic or viscous. The critical va
of a may be obtained by analyzing the imaginary part of t
permeability. In order to do this, it is convenient to use t
dimensionless permeability defined by

K* ~v!52
8K~v!

a2
,
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so, that Eq.~7! takes the form

K* ~v!5
8~12 i t m!

aÃ F12
2

AaÃJ0~AaÃ!
J1~AaÃ!G .

~8!

This expression gives the dynamic behavior of a Maxw
fluid flowing in a tube. It is important to note that it does n
take into account the nonlinear aspects of viscoelasticit
Eq. ~8! does, however, contain the intrinsic elastic behav
To gain some insight into the importance of this formula,
present in the following section some numerical calculatio

III. DETERMINATION OF THE MAXIMUM VELOCITY

It is clear that the maximum value of the permeabil
corresponds to the maximum value for the mean velocity
a given pressure gradient. In order to illustrate the results
we have obtained, we now consider some particular val
For example, using a relaxation time on the order of seco
a mass density and viscosity on the order of those of wa
and a tube radius on the order of centimeters, we finda
'0.01. The behavior ofK* (v) for this value ofa can be
seen in Fig. 1. It is important to emphasize that the maxim
of the permeability is not at the phase point, because
dissipation shifts this maximum to slightly higher freque
cies.

In the case of Newtonian fluids a dissipative behavior
always found in transient problems, while in Fig. 1 we see
elastic resonance at a specific frequency. This resonance
plies that the dynamic response could be several order
magnitude higher than the steady one. The critical value
the parametera which determines whether a dissipative b
havior prevails or a resonance at a given frequency appea
@18#

ac511.64.

If a.ac , the behavior of the system is dissipative, wh
resonant frequencies can be found ifa,ac . Now, two ques-

FIG. 1. The dimensionless permeability is plotted against
dimensionless frequency for the case of a Deborah number oa
50.01. The solid and dashed lines correspond to the real and im
nary parts, respectively.
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tions immediately arise that will serve to assess the imp
tance of such resonances. The first one concerns the m
mum value of Re@K* (v)# for a given value ofa, while the
second has to do with the value of the frequency correspo
ing to such a maximum. In order to present useful results,
have plotted in Figs. 2 and 3 the numerically determin
values of Kmax* and vmax* as functions ofa, respectively.
These results can be fitted rather well for several orders
magnitude of the parametera by means of

Kmax* 5
103/4

a
, ~9!

and

vmax* 5
102/5

Aa
. ~10!

Combination of these two results leads to

Kmax* 51021/5~v* !2.

This expression indicates that, in the elastic regime,
maximum value for the velocity grows more rapidly than t
frequency of the oscillating pressure. Up to this point,

e

gi-

FIG. 2. This graph shows Re(Kmax* )2a pairs~solid line! and the
adjusting formula Eq.~9! ~dashed line!.

FIG. 3. This graph shows the comparison between the adjus
formula @dashed line Eq.~10!# andvmax-a pairs ~solid line!.
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have analyzed only the main maximum but, as can be see
Fig. 4, there are other local maxima. The second maxim
shown in Fig. 4 may also be important because it can
orders of magnitude larger than the permeability for ste
flow, and the~reduced! permeability values between the fir
and the second maximum are less than 1. This illustrates
filtering characteristic of a viscoelastic fluid flowing in a tub
when oscillations are present.

As an application of our analysis of the linearized Ma
well fluid flowing in a tube, we consider the case of hum
blood flowing in the arteries. In biorheology it is consider
that a value fora less than one is representative of elas
behavior@20,21#. For blood cells the value of the relaxatio
time is on the order of 0.06 s@22#, the radius of arteries go
from 0.02 to 0.35 cm@20# and the density of the blood i
approximately 1.05 g/cm3 @20,23#. Assuming linear vis-
coelasticity,

h* 5h82 ih9

it is found that

h85a exp~bP!,

where a51.055, b50.035, andP (PP@0.25,0.60#) is the
packed cell volume fraction@24#, the viscosity units being in
cp. The viscosity of blood depends on the shear rate, ran
from 5 cp at shear rates on the order of 500 s21 up to 20 cp
at low shear rates@25# . Here we consider two representativ
values for the viscosity, 5 cp and 20 cp, in the region of 1
to 500 s21 shear rate, with hematocrit 31% at 18 °C@25#.

From these data we can find that in blood the parametea
takes on values between a lower limit given by

a l5
1.05~0.02!2

20~0.06!
53.531024

and an upper limit given by

ah5
1.05~0.35!2

5~0.06!
50. 42875.

FIG. 4. In this figure the real part of the dimensionless perm
ability is shown. Here it is clear that the second maximun also
be important.
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Thus the optimum pumping frequency range for these v
ues of a lies betweenvmax l5102/5/A0.000 355134 rad/s
andvmaxh5102/5/A0.4287553. 8 rad/sec, or equivalently,

n l5
134

2p
'20 Hz

and

nh5
3.8

2p
'0.6 Hz.

With these calculations, we may ask whether the he
pumps our blood in the most efficient manner according
the viscoelastic properties of the blood and the radius of
arteries. The range of our estimations is in agreement w
the experimental results in oscillatory flow in rigid blood
filled tubes@20#. But before addressing the answer, it is im
portant to clarify some points involved in such calculation
There are other times associated with the viscoelastic
sponse of the blood cell ensemble on the order of seco
@13#. Moreover, the higher value ofa is probably correct,
indicating that the most efficient frequency for blood flow
arteries with 0.35 cm, is of the order of 1 Hz. The low
value we found fora is open to question, because the blo
flowing in very small capillaries has a lower viscosity tha
that of blood flowing in thick arteries, due to a small
packed cell volume fraction in the former@22#. However, our
simple linear calculation gives a correct order of magnitu
without considering complications such as the fact that
arteries and veins are elastic and that there are other no
earities in the viscoelastic characteristics of the blood. In t
sense, our estimates in this example serve as an indicatio
the order of magnitude for a resonantlike response in
oscillating flow of viscoelastic fluids in a tube. Of course, w
are fully aware of the fact that in the circulatory system t
elasticity of blood vessels is often important. Neverthele
the results for a Newtonian fluid in a deformable poro
medium@4# indicate that the elasticity of the medium has
effect on the expression for the dynamic permeability a
one would expect that the same applied also in this case
clearly this must be verified. Therefore, an obvious extens
of the present study, which we may address in the futu
would be to consider elastic tubes and include a more r
istic model for the complex structure of the blood.

IV. CONCLUSION

The developments presented in the previous sections
serve a few further comments. While it is clear that the Ma
well fluid is a drastic simplification of a viscoelastic fluid, w
are persuaded that the results we have derived for the
namic permeability capture the essential physics of the pr
lem, albeit in an approximate manner.

In transport phenomena in porous media, there has
ready been some work dealing with the flow of no
Newtonian fluids through porous media using several te
niques@7,5#; however, the dynamic generalization of Darcy
law for such fluids that we derived in Ref.@18# had not been
attempted previously to our knowledge. From the results
this paper we are able to give a criterion to select the ra

-
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of frequency to obtain an enhancement in the oscillating fl
rate. There is no simple scaling relation, such as the
found by Zhou and Sheng@4# for the Newtonian fluid. How-
ever, it is clear that many different combinations of flu
properties and tube diameters lead to the same valuea
and thus some kind of ‘‘universality’’ is implied by Eq.~7!.
Therefore, we would expect that in a real system one co
obtain enhanced transport by identifying the parameter
responding to oura that combined the characteristics of th
fluid ~density, viscosity, and stress tensor relaxation tim!
and the radius of the tube. The existence of a velocity
@17# in the dilute solution flows through porous media m
be qualitatively understood as a resonance phenomena
to the critical value ofa. It should thus be clear that th
performance of experimental studies to assess the valu
our predictions would be called for. The same comments
is

.

n

w
e

ld
r-

p
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of
n

be applied to biofluids flowing in capillaries for which th
results described in the third section are particularly sugg
tive.

Finally we would hope our findings encourage further e
perimental and theoretical studies for~a! the possible use o
porous media in organic filter applications using an osci
tory pressure gradient,~b! the consequences of the enhanc
ment in the dynamic permeability for oil recovery tec
niques, and~c! the nonlinear behavior in blood or organ
flow in unsteady situations.
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